
 

International Journal of Astrophysics and Space Science 
2018; 6(1): 18-27 

http://www.sciencepublishinggroup.com/j/ijass 

doi: 10.11648/j.ijass.20180601.12 

ISSN: 2376-7014 (Print); ISSN: 2376-7022 (Online)  

 

MHD Fluid Flow of an Exponentially Varying Plasma 
Density in a Radiating and Slowly Rotating Hot Sphere 

B. S. Tuduo
1, *

, T. M. Abbey
1
, K. D. Alagoa

2
 

1Department of Physics, University of Port Harcourt, Port Harcourt, Nigeria 
2Department of Physics, Niger Delta University, Amassoma, Nigeria 

Email address: 

 
*Corresponding author 

To cite this article: 
B. S. Tuduo, T. M. Abbey, K. D. Alagoa. MHD Fluid Flow of an Exponentially Varying Plasma Density in a Radiating and Slowly Rotating 

Hot Sphere. International Journal of Astrophysics and Space Science. Vol. 6, No. 1, 2018, pp. 18-27. doi: 10.11648/j.ijass.20180601.12 

Received: June 15, 2017; Accepted: July 6, 2017; Published: February 11, 2018 

 

Abstract: The study presents the effect of density variation on the flow structure of a plasma gas in a slowly rotating and 

radiating hot sphere. The problem which is solved by general perturbation method shows that the plasma temperature 

decreases to a minimum at a radial distance of 1.4 solar radii and then increased to a maximum value at a radial distance of 3.5 

solar radii, for various radiation parameters, N
2
. The sudden increase in temperature profile when the radial distance is 1.4 solar 

radii, indicates the heating up of the upper regions of the solar atmosphere. 
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1. Introduction 

MHD flows have found useful applications in several 

fields of study such as engineering (as in the case of MHD 

power generation, plasma confinement, liquid metal cooling 

of nuclear reactors, etc), medicine, geophysics and as well as 

astrophysics, where magnetic field is seen to play a dominant 

role in the activities of stars and their formation [1 – 6, 35]. 

Our Sun which is a star in the Milky-way galaxy with a 

surface temperature of a x 10
6
 degree Kelvin, has the ability 

to replenish the huge amount of energy lost, in the form of 

radiation, to its surrounding through nuclear fusion at the 

core. In the literature, the studies of MHD flows abound, but 

in most of them the plasma density is usually considered 

constant and the effect of compressibility assumed to be zero. 

According to [7], ignoring the effect of compressibility in 

such flow models is rather dangerous. 

This is because experiment indicates that free convection 

motion in a flow regime is usually caused by changes in the 

local density due to variations in the hydrostatic pressure 

resulting in isotropic acceleration of the fluid. 

In this regards, several reports in the literature have 

highlighted the import of density in the study of 

astrophysical plasma. For instance, [8] calculated the 

variation of the brightness and polarization of the k-corona 

under the assumption of isothermal corona with a 

hydrostatic description of density. Also, [9] emphasized the 

possible deduction of hydrostatic coronal temperature from 

the coronal electron density and the relation of the coronal 

white light, which is due to scattering, to free electron 

density. [10] and [11] respectively described the distribution 

of the inner coronal electron densities as an exponential 

function of radial distance from the solar core to obtain the 

coronal brightness. 

Similarly, the astrophysical data presented by [12] show 

that the plasma density within the solar interior and its 

atmosphere changes from one layer to another as one moves 

away from the core. To this end [13] presented a model and 

show that the plasma density in the solar sphere has an 

exponential dependent function. 

In all the studies above, none have included the effect of 

radiation and heat transfer on the flow model. This study 

therefore, is to address the effect of plasma density variation 

on the flow structure of an ionized gas in the present of 

radiation and convective heat transfer in a slowly rotating hot 

sphere. 

The study is divided into four main sections. Section 2 

presents the physics and the mathematical formulations of the 

problem, leading to the governing equations of the problem. 

On the other hand, sections 3 and 4, respectively handle the 

method of solutions and the analysis, and the discussion of 

the various results of the problem with respect to some 

realistic values of the flow parameters. 
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2. Problem Formulations 

The problem considers the flow of a plasma gas whose 

density varies radially in a slowly rotating and radiating hot 

sphere. The surface temperature of the solar sphere according 

to observations is Ts = a x 10
6
 degree Kelvin, where a is a 

constant integer. Several findings in the literature and 

astrophysical observations show that unlike pulsars, the Sun 

rotates slowly about the azimuthal with an angular velocity,

0Ω  such that its magnetic Reynolds number Rm is far less 

than one ( . ., 1)mi e R << . This implies that the induced 

magnetic field B′ can be neglected and the flow is seen to be 

influenced by the applied magnetic field, B0, which manifest 

as a result of the dynamo action within the interior of the 

astrophysical object. Similarly, the analysis of the 

astrophysical data presented by [12, 14 - 16] reveal that the 

plasma density distribution in the Sun is as follows: (the core 

(1.6 x 10
5
 kg/m

3
), the radiative zone (2 x 10

-3
 kg/m

3
), the 

convective zone (5 x 10
-4

 kg/m
3
), the photosphere (8 x 10

-5
 

kg/m
3
), the chromospheres (5 x 10

-6
 kg/m

3
) and the corona  

(1 x 10
-11

 kg/m
3
)). 

Following these, [13] indicates that the plasma density 

distribution in the solar globe can be illustrated as; 

[ ] [ ]exp 11.1 .15/ exp 11.1 /(1 0.02/ )
( ) 98.8 .( ) 10 10

r o r r r
o massr Avρ ρ − + − + = +  

where, oAv  and massρ  are the Avogadros number and proton 

mass, respectively. 

Also, due to nuclear processes within the core, the Sun as a 

star has a core temperature in the order of 10
7
 degree Kelvin 

in relation to its surface with temperature of just about 5,800 

degree Kelvin. That is, the core temperature Tc is far greater 

than the surface temperature Ts (Tc >> Ts). This is responsible 

for radiative heat transfer. 

If, therefore, ( )rρ ′ ′  is the density of the plasma as a 

function of r ′ , and ( , , )V u v w′ ′ ′ ′=  are respectively the 

velocity components in the orthogonal ( , , )r θ ϕ′  directions of 

the spherical coordinate system; p′ , the pressure; T ′ , the 

temperature; rq′ , the radiative heat transfer flux vector; µ , 

the dynamical viscosity; χ , the permeability; pC , the 

specific heat capacity at constant pressure; κ , the thermal 

conductivity; σ , the Stefan-Boltzmann constant; γ , thermal 

expansivity coefficient; rα , the absorption coefficient and

T∞ , is the temperature of the medium at equilibrium with wT

= Ts, the wall or surface temperature which is kept constant, 

then the mathematical equations governing the flow of the 

plasma in the stratified density layers of the solar body, 

considering the Boussinesq approximation and following the 

method adopted by [1, 3, 17 - 18] can be presented as 

follows; 

( ) 0Vρ ′ ′∇• =                               (1) 

( )

( )

2 2
0

w

V V P V V B V

g T T

µρ µ σ
χ

ρ β

′ ′ ′ ′ ′ ′ ′ •∇ = −∇• + ∇ − − + 

′ ′ −
  (2) 

( ) 2
p rC V T K T qρ ′ ′ ′ ′ • ∇ = ∇ − ∇               (3) 

and 

2 33 4 0r rq q T Tσ α σ α′ ′ ′ ′∇ •∇ − − ∇ =            (4) 

where, the operator ∇ has its usual meaning and g is the 

acceleration due to gravity. Equations (1) to (4) are 

respectively the continuity, force, energy and the generalized 

Rosseline radiative heat transfer flux [19]. These equations, 

in other words, are the expressions for the conservation of 

mass, momentum and energy within the system. 

As was observed in the case of [13] and [20], the plasma 

gases in the intergalactic and interplanetary layers are seen to 

be rarefied. Such that the optical property, rα , of the plasma 

is far less than one (i.e., rα ≪ 1). That is, the gas in this 

region is mostly regarded as optically thin. Hence, the 

generalized Rosseline radiative heat flux integro-differential 

equation for the optically thin limit can be expressed as; 

( )4 416rq T Tασ ∞′ ′∇ = −                           (5) 

Furthermore, from the statistical data presented by [13], as 

well as the models of [21] and [22], the temperature 

difference between adjacent layers of the plasma is not much 

compared to each other, thus; 

T T φ∞′ = +                                 (6) 

where, φ is a small temperature correction factor, such that,

( ) ( ),O T O Tφ ∞′ >> >>  then equation (5), the heat transfer 

flux vector equation reduced to; 

316 ( )rq T Tσ α φ∞ ∞′∇ = +                       (7) 

and the heat transfer equation becomes; 

( ) 2 316pC V K Tρ φ φ σ α φ∞′ ′ • ∇ = ∇ −              (8) 

Equations (1), (2) and (8) shall be solved subject to the 

following boundary conditions; 

cT T′ = , and , , 0u v w′ ′ ′ =  on r = 0.25 R⊗ (near the core) 

and 

wT T′ = , and , , 0u v w′ ′ ′ =  on r = 1.0 R⊗ (the surface); 

where, ⊗R  is the solar radius.  

Now, introducing the following non-dimensional relations; 

0

r
r

R

′
= ,

0 0

( , , )
( , , )

u v w
u v w

R

′ ′ ′
=

Ω
,

0

( )
( )

r
r

ρρ
ρ
′

= ,
w

T

T T

φ ∞

∞

−
Θ =

−
, 

and eliminating the pressure gradients in the r and θ -

directions, Equations (1), (2) and (8) in the spherical 

coordinate system ( , , )r θ ϕ becomes; 

 

 



20 B. S. Tuduo et al.:  MHDFluid Flow of an Exponentially Varying Plasma Density in a  

Radiating and Slowly Rotating Hot Sphere 

 

( )2 1
cot 0

sin

u u v v
u w

r r r r r r

ρ ρ ρ ρρ θ ρ
θ θ ϕ

∂ ∂ ∂ ∂+ + + + + =
∂ ∂ ∂ ∂

                                             (9) 

2 2
2 2 2

2 2 2 2 2

1 2 2 2
Re cot

sin sin sin
r

u v u w u v w v v w
u M u G

r r r r r r r r
ρ χ θ ρ

θ θ ϕ θ ϕθ θ
   ∂ ∂ ∂ + ∂ ∂+ + − = ∇ − − − − − − + Θ   ∂ ∂ ∂ ∂ ∂     

   (10a) 

2
2 2 2

2 2 2 2 2

1 2 2cos
Re cot

sin sin sin
r

v v v v w v u v w u w
u M v G

t r r r r r r r r

θρ θ χ ρ
θ θ ϕ θ ϕθ θ

   ∂ ∂ ∂ ∂ ∂ ∂+ + + + − = ∇ − − − + − + Θ   ∂ ∂ ∂ ∂ ∂ ∂     
  (10b) 

2 2 2

2 2 2 2 2

1 2 2cos
Re cot

sin sin sin sin
r

w v u w w u w v w u v
u M w G

r r r r r r r r

θρ θ χ ρ
θ θ ϕ ϕ ϕθ θ θ

  ∂ ∂ ∂ ∂ ∂+ + + + = ∇ − − − + + + Θ  ∂ ∂ ∂ ∂ ∂    
(10c) 

( )2 2Re Pr
v w

u N
r r r

ρ
θ ϕ

 ∂ Θ ∂ Θ ∂ Θ+ + = ∇ − Θ ∂ ∂ ∂ 
                                                   (11) 

where, 
2 2 2

2

2 2 2 2 2 2

2 1 cot 1

sinr rr r r r

θ
θθ θ ϕ

∂ ∂ ∂ ∂ ∂∇ = + + + +
∂ ∂∂ ∂ ∂

, 

2
0 0 0Re

Rρ
µ

Ω
=  ; the rotational Reynolds number, 

2
2 0R

k
χ = ; the porosity parameter, 

2 2
2 0 0B R

M
σ

µ
= ; the magnetic parameter (the Hartmann 

number), 

( )0 0

0
r

R
G g T T

ρ γ
µ ∞′= −

Ω
; the Grashof number, 

Pr
pCµ

κ
= ; the Prandtl number, and 

2
2 016 r R T

N
α σ

κ
∞= ; the radiation or heat transfer 

parameter. 

with, 

cΘ = Θ  and , , 0u v w = , on 0.25r = R⊗ (near the core) 

and, 

wΘ = Θ  and , , 0u v w = , on 1.0r = R⊗ (the surface). 

This brings to conclusion the physics and the mathematical 

formulations of the problem. Next to be considered is the 

analysis and method of solution. 

3. Method of Solution 

The formulations show that the density of the plasma can 

be expressed as; 

0 0( ) ( )r Exp rρ ρ ε′ ′= −                      (12) 

such that in a non-dimensional form, we have; 

0( ) ( )r Exp rρ ε= −                          (13) 

where, 
[ ]0

0
0

( )In r

R r

ρεε
′

= = −  is the density parameter and is 

a measure of the ratio of logarithmic decrement of the density 

with radial distance, r . 

Generally, the flow equations expressed in (9) to (11) are 

non-linear and highly coupled so that their analytical 

solutions are intractable. Therefore, as suggested by [5, 23 – 

24], problem of this nature can be tackled analytically by 

adopting general perturbation method of solution about a 

small parameter whose value is far less than one. In this 

analysis, since the Sun is a slowly rotating star, its Reynolds 

number Re is far less than one (i.e., (Re) 1O << ). Therefore, 

the flow variables can be expressed as; 

0 1( , ) ( , ) Re ( , ) ...f r f r f rθ θ θ= + +                            (14) 

where, O(f0) and O(f1) are the zero and first order variables. 

Considering that the flow is symmetrical about the ϕ -axis so 

that, 0
f

ϕ
∂ =
∂

; give the following orders of approximations in 

Re; 

0 0
0 0 0

2
cot 0

u v
u u v

r r r r r

ρ ρ ρ ρρ θ
θ

∂ ∂∂+ + + + =
∂ ∂ ∂

                                           (15)

( )2 2 2 0 0 0
0 02 2

1 1 1
0

sin
r r

u
M r v G G

r r r r r rr

ρ ρχ ρ
θ θθ

       ∂ ∂ Θ ∂ Θ∂ ∂∇ − − − − + − + Θ + =        ∂ ∂ ∂ ∂ ∂      
             (16) 

2 2 2
0 02 2

1
0

sin
rM w G

r
χ ρ

θ
 

∇ − − − + Θ =  
 

                                             (17) 
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( )2 2
0 0N∇ − Θ =                                                                        (18) 

for the order-O(f0) equations and 

1 1
1 1 1

2
cot 0

u v
u u v

r r r r r

ρ ρ ρ ρρ θ
θ

∂ ∂∂+ + + + =
∂ ∂ ∂

                                                    (19) 

( )

2 2 2
2 2 20 0 0 0 0 0 0 0 0 0 0

0 0 2 2

1 1 1
1 1

1 1 1
cot

sin

1 1
r r

v v v u v w u v u v w
r u u M

r r r r r r r r r r r

u
r v G G

r r r r r r

ρ θ χ
θ θ θ θ

ρ ρρ
θ θ

       ∂ ∂ ∂ ∂ +∂ ∂ 
 + + − − + − == ∇ − − −        ∂ ∂ ∂ ∂ ∂ ∂           

     ∂ ∂ Θ ∂ Θ∂ ∂− + − + Θ +    ∂ ∂ ∂ ∂ ∂     

(20) 

2 2 20 0 0 0 0 0 0
0 1 12 2

1
cot

sin
r

w v w u w v w
u M w G

r r r r r
ρ θ χ ρ

θ θ
  ∂ ∂

+ + + = ∇ − − − + Θ    ∂ ∂   
                  (21) 

( )2 20 0 0
0 1Pr

v
u N

r r
ρ

θ
 ∂ Θ ∂ Θ

+ = ∇ − Θ ∂ ∂ 
                                                          (22) 

for the order-O(f1) equations. 

The solutions to the flow variables in the orders O(f0) and 

O(f1) equations can be effected by starting with the 

temperature equations and using the following 

transformations; 

0 00( , ) ( )sinr rθ θΘ = Θ  

0 00( , ) ( )sinw r w rθ θ=  

0 00( , ) ( )cosu r u rθ θ=  

0 00( , ) ( )sinv r v rθ θ=  

1 10( , ) ( )sin 2r rθ θΘ = Θ
 

1 10( , ) ( )sin 2w r w rθ θ=
 

2 2
1 10( , ) ( ) (2cos sin )u r u rθ θ θ= −  

and 

1 10( , ) ( )sin 2v r v rθ θ=
.
 

The solutions to the flow variables, obtained by the 

analysis of the resulting differential equations based on the 

principles stated in [25] and [26] for modified spherical 

Bessel and Bessel differential equations, becomes; 

( ) ( )0 1 1 2 1( )r a i Nr a k NrΘ = +                    (23) 

( ) ( )0 1 1 2 1 0( ) ( ) ( )rG
w r b i r b k r r r d rβ β ρ

β
= + − Θ∫ (24) 

3 3 3
0 1 2 0 0

2 2
( ) ( ) ( )

3 3
u r d d r r d r r r r d rψ ψ− −= + + +∫ ∫  (25) 

3
3 312

0 11 0 0

2
( ) ( ) ( )

2 3 3

d r
v r d r r d r r r d rψ ψ

−
−= − + − −∫ ∫ (26) 

( ) ( )1 11 2 22 2 1( ) ( )r a i N r a k N r N T r d rΘ = + + ∫        (27) 

( ) ( )1 11 2 22 2 1( ) ( )w r b i r b k r f r d rβ β β= + + ∫       (28) 

4
4 1 4

1 10 20 1 1( ) ( ) ( )
5 5

r r
u r d r d r r h r d r r h r d r

−
− −= + + −∫ ∫  (29) 

and 

4
4 1 4

1 21 22 1 1

2 2
( ) ( ) ( )

3 5 15

r r
v r d r d r r h r d r r h r d r

−
− −= − + − −∫ ∫  (30) 

where, z N r=  and rη β=  and ( )ni z , ( )nk z , ( )ni η  and 

( )nk η are respectively the modified spherical Bessel 

functions of the first and second kind of order n, with z and 

η as the arguments. Whereas, 

( ) ( )0 1 1 2 1 0( ) ( )r c i r c k r Y r d rψ β β β= + + ∫ , 

0
0 02

( )1
( ) ( ) ( )r r

d r d
Y r r G G r

d r d r r

ρ ρρ
β

  Θ = − + Θ +  
   

, 

0 0 0
1 02

( ) ( ) ( )( ) Pr
( ) ( )

2

d r v r rr
T r u r

d r rN

ρ  Θ Θ
= + 

 
. 

0 0 0 0 0
1 0 12

( ) ( ) ( ) 2 ( ) ( )( )
( ) ( ) 2 ( )

2
r

d w r u r w r v r w rr
f r u r G r

d r r r

ρ
β

  
= + + − Θ   

  
1 1( ) 3 ( )h r rψ= − ,

( ) ( )1 11 2 22 2 1( ) ( )r c i r c k r Y r d rψ β β β= + + ∫ , 
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and 

2 2
2 20 0 0 0 0 0 0

1 0 0 0 0 02 2 2 2

1
12

( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( ) 2 ( )( ) 1
( ) ( ) ( ) ( ) ( ) ( )

2

( ) ( ) ( )
( ) ( )r

d v r u r d u r v r u r v r w rr
Y r r u r v r u r v r w r

r r d r r d r r r r

G d r d r r
r r

d r d r r

ρ
β

ρ ρρ
β

   ∂ = + + − + + + +     ∂     

  Θ− + Θ +  
  

 

with 

( )2 2 2Mβ χ= + , 

( ) ( )
( ) ( ) ( ) ( )

0 1 1 2 0 2 1 1
1

1 1 1 2 1 2 1 1

( ) ( )r k Nr r k Nr
a

i Nr k Nr i Nr k Nr

Θ − Θ
=

−
,

( ) ( )
( ) ( ) ( ) ( )

0 2 1 1 0 1 1 2
2

1 1 1 2 1 2 1 1

( ) ( )r i Nr r i Nr
a

i Nr k Nr i Nr k Nr

Θ − Θ
=

−
,

( ) ( )
( ) ( ) ( ) ( )

0 1 1 2 0 2 1 1
1

1 1 1 2 1 2 1 1

( ) ( )f r k r f r k r
b

i r k r i r k r

β β
β β β β

−
=

−
,

( ) ( )
( ) ( ) ( ) ( )

0 1 1 2 0 2 1 1
2

1 1 1 2 1 2 1 1

( ) ( )f r k r f r k r
b

i r k r i r k r

β β
β β β β

−
=

−
, 

3 3
0 2 1 0 1 2

1 3 3
2 1

( ) ( )u r r u r r
d

r r

− −

− −
−

=
−

, 0 1 0 2
2 3 3

2 1

( ) ( )u r u r
d

r r− −
−

=
−

, 
3 3

0 1 1 0 2 2
11 3 3

2 1

( ) ( )v r r v r r
d

r r

−
=

−
, 

{ }3 3
1 2 0 1 0 2

12 3 3
2 1

2 ( ) ( )r r v r v r
d

r r

−
=

−
, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 2 2 1 2 1 2 2 1
11

2 1 2 2 2 2 2 1

( ) ( ) ( ) ( )r T r k Nr r T r k Nr
a

i Nr k Nr i Nr k Nr

Θ − − Θ −
=

−
, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1 2 2 1 1 1 1 1 2 2
22

2 1 2 2 2 2 2 1

( ) ( ) ( ) ( )r T r i Nr r T r i Nr
a

i Nr k Nr i Nr k Nr

Θ − − Θ −
=

−
, 

( ) ( )
( ) ( ) ( ) ( )
1 2 2 1 1 1 2 2

11
2 1 2 2 2 2 2 1

( ) ( )f s r k r f s r k r
b

i r k r i r k r

β β
β β β β

−
=

−
,

( ) ( )
( ) ( ) ( ) ( )

1 1 2 2 1 2 2 1
22

2 1 2 2 2 2 2 1

( ) ( )f s r i r f s r i r
b

i r k r i r k r

β β
β β β β

−
=

−
,  

4 4
1 2 1 1 1 2

10 4 4
1 2 2 1

( ) ( )u s r r u s r r
d

r r r r

− −

− −
−=
−

, 1 1 2 1 2 1
20 4 4

1 2 2 1

( ) ( )u s r r u s r r
d

r r r r− −
−

=
−

, 

4 4
1 1 1 1 2 2

21 5 5
2 1

( ) ( )v s r r v s r r
d

r r

−=
−

 

and 

{ }
( )

4 4
1 2 1 1 2 1 2 1

22 5 5
2 1

3 ( ) ( )

2

r r v s r r v s r r
d

r r

−
=

−
. 

While, r1 and r2 are respectively the non-dimensional radii at the boundaries and the other constants that emanated from the 

solutions of the equations are given as follows; 
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Figure 1. Temperature profiles for various values of Radiation Parameter (N2). 

 
Figure 2. Axial Velocity profiles for various Radiation Parameter (N2). 

4. Discussion 

The primary aim of this study is to investigate the effect of 

density variation on the dynamical variables, such as 

temperature and velocity; of a plasma gas in a radiating and 

slowly rotating hot sphere. To this end, Section 2 presents the 

mathematical model of the problem incorporating the density 

as an exponential function of the radial distance, r. The results 

of the analysis using the Wolframs Mathematica software 

(version 9) are presented in Figures 1 to 7 for the following 

realistic computational parameters; (ԑ0 = 0.0, 0.1, 0.3, 0.5, 0.7, 
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1.0, 2.0, 5.0 and 10.0); (N
2
 = 0.4, 0.5, 0.7, 0.8, 0.9, 1.0, 1.1, 

1.2, 1.3 and 1.5); (M
2
 = 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8 

and 2.0); (Re = 0.001, 0.01, 0.1) and (Pr = 0.71). 

The analysis shows that variation of the plasma density has 

tremendous effects on the profiles of the plasma flow 

variables. For example, the temperature of the plasma is seen 

to decease to a minimum value at the point where r = 1.4 ⊗R

and then suddenly increase to a maximum value when r = 3.5

⊗R from where it decreases as r tends to infinity ( r → ∞ ). 

Similar observation is noticed in the case of the velocity 

profiles (Figure 2). On the other hand, the model shows that 

the flow experience a velocity reversal when the magnetic 

field parameter is greater than 0.8 (i.e., M
2
 > 0.8). That is, the 

magnitude of the flow velocities according to Figures 1, 5 

and 6 increase with magnetic field strength and thermal 

radiation parameter but decreases with increase in the density 

parameter. The general picture of the temperature distribution 

of the flow model is presented in 3D format in Figure 7. 

 

Figure 3. Radial Velocity profiles for various values of Magnetic Parameter (M2). 

The region with low ions density indicates that it is 

dominated by the neutral atoms. In this case, the flow 

experience ambipolar effects. This is seen to account for the 

reduction in the velocity of the plasma. [27 – 30] suggest that 

this is true in the case of the D and E layers of the 

ionosphere. 

 

Figure 4. Temperature profiles for various values of Density Parameter (ԑ0). 
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It is observed that when the density parameter, ԑ0 is low the 

fluid tends to be populated by ions and electrons and their 

interactions lead to increase in the kinetic energy of the 

plasma and a subsequent increase in the temperature as can 

be seen from Figure 7. [20, 31 – 33] indicate that such high 

temperature and low pressure within the gas lead to gas 

rarefication, resulting in the production of rarefaction waves 

which flow in the reverse direction. The reversal carries 

along with it energetic particles at high temperature resulting 

in the heating up of the upper solar atmosphere [12, 34]. 

Generally, the analysis aids our understanding of 

astrophysical interiors and its atmospheres as well as the 

interactions in the D and E layers of the Earth’s ionosphere as 

noted by [35]. 

 

Figure 5. Axial Velocity profiles for various values of Density Parameter (ԑ0). 

 

Figure 6. Axial Velocity profiles for various Magnetic Parameter (M2). 
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Figure 7. 3D Temperature profile with Density Parameter (ԑ0 ). 

5. Conclusion 

The rarefaction waves produced by the interactions of 

ionized species of the plasma at low density parameters lead 

to flow reversal. Energetic fluid elements carried along in 

this reversed flow heat up the plasma which could account 

for the high temperatures observed in upper solar 

atmosphere. The reduction in temperature above the solar 

sphere leads to increased presence of neutral atoms in the 

lower chromosphere. In this case, the flow experience 

ambipolar effects resulting from the interactions of the 

ionized species with the neutrals [35]. Generally, variation in 

the plasma density is seen to have an important effect on 

these interactions and the flow profiles of the plasma. 
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