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Abstract: In this paper, we have obtained a relativistic and spherically symmetric stellar configuration that describes an 

anisotropic fluid with a charge distribution that represents a potential model for a dark energy star and we specify particular 

forms in the gravitational potential and the electric field intensity which allows solve the Einstein-Maxwell field equations. 

The reason for proposing this model originates from the evidence that recent observational findings suggest that the universe 

has an accelerated cosmic expansion and the model of dark energy star is one of the most reasonable explanations of this 

phenomena. The field equations are integrated analytical and new stellar configurations are obtained are analyzed. For each 

these solutions we found that the radial pressure, the anisotropy factor, energy density, metric coefficients, mass function, 

charge density are regular and well behaved in the stellar interior. With the new solutions can be developed models of dark 

energy stars physically acceptable where the causality condition is not satisfied or the strong energy condition is violated. This 

model has a great application in the study of the fundamental theories of physics and cosmology. Several independent 

observations indicate that the greater part of the total energy density of the universe is in the form of dark energy and the rest in 

the form of nonbaryonic cold dark matter particles, but which have never been detected.  

Keywords: Stellar Configuration, Gravitational Potential, Charge Distribution, Anisotropic Fluid,  

Accelerated Cosmic Expansion, Einstein-Maxwell Field Equations 

 

1. Introduction 

Recent astrophysical observations have confirmed that the 

Universe shows an accelerated cosmic expansion [1]. Evidence 

of this expansion has been shown independently from 

measurements of supernovae of type Ia and from microwave 

background radiation [2]. It is proposed that this cosmological 

behavior is caused by a hypothetical dark energy, a cosmic 

fluid parameterized by an equation of state ω = p/ρ < -1/3 

where p is the spatially homogeneous pressure and ρ the dark 

energy density [1-4]. The dark energy possesses a strong 

negative pressure that can help to explain the acceleration of 

the universe in expansion [4]. The range for which ω < -1 has 

been denoted phantom energy and possesses peculiar 

properties, such as negative temperatures and the energy 

density increases to infinity in a finite time, resulting in a big 

rip [2-4]. It also provides a natural scenario for the existence of 

exotic geometries s uch as wormholes [5-7]. 

In the construction of the first theoretical models of 

relativistic objects are important the works of Schwarzschild 

[8], Tolman [9], Oppenheimer and Volkoff [10]. 

Schwarzschild [8] found analytical solutions that allowed 

describing a star with uniform density, Tolman [9] developed 

a method to find solutions of static spheres of fluid and 

Oppenheimer and Volkoff [10] used Tolman's solutions to 

study the gravitational balance of neutron stars. It is 

important to mention Chandrasekhar's contributions [11] in 

the model production of white dwarfs in presence of 

relativistic effects and the works of Baade and Zwicky [12] 

who propose the concept of neutron stars and identify a 
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astronomic dense objects known as supernovas. 

The notion of dark energy is that of a homogeneously 

distributed cosmic fluid and when extended to 

inhomogeneous spherically symmetric spacetimes, the 

pressure appearing in the equation of state is now a negative 

radial pressure, and the tangential pressure is then determined 

via the field equations [2, 3]. The generalization of the 

gravastars picture with the inclusion of an interior solution 

governed by the equation of state p = ωρ with ω <-1/3, 

will be denoted by dark energy star in agreement with 

Chapline [13]. Lobo [3] explored several configurations, by 

imposing specific choices for the mass function and studied 

the dynamical stability of these models by applying the 

general stability formalism developed by Lobo and Crawford 

[14]. Chan et al. [15] propose that the mass function is a 

natural consequence of the Einstein´s field equations and 

considered a core with a homogeneous energy density, 

described by the Lobo´s first solution [3]. Malaver and 

Esculpi [16] presented a new model of dark energy star by 

imposing specific choice for the mass function which 

correspond an increase in energy density inside of the star. 

Bibi et al. [4] obtained a new class of solutions of the 

Einstein-Maxwell field equations which represents a model 

for dark energy stars with the equation of state pr=-ρ. 

According Chan et al. [15] the denomination dark energy is 

applied to fluids which violate only the strong energy 

condition given by ρ+pr+2pt ≥ 0 where ρ is the energy 

density, pr and pt are the radial pressure and tangential 

pressure, respectively. 

In the description of the behavior of relativistic gravitating 

matter is important include the presence of anisotropy in the 

pressure [17-29] and is defined as rt pp − where tp  is the 

tangential pressure. Bowers and Liang [30] extensively discuss 

the effect of anisotropy in general relativity. The existence of 

anisotropy within a star can be explained by the presence of a 

solid core, phase transitions, a type III super fluid, a pion 

condensation [31] or another physical phenomenon as the 

presence of an electrical field [32]. Many researchers have 

used a great variety of mathematical techniques to try to obtain 

solutions of the Einstein-Maxwell field equations since it has 

been demonstrated Komathiraj and Maharaj [33], 

Thirukkanesh and Maharaj [34], Maharaj et al. [35], 

Thirukkanesh and Ragel [36, 37], Feroze and Siddiqui [38, 

39], Sunzu et al. [40], Pant et al. [41] and Malaver [42-45].  

Following Bibi et al. [4], in this paper we obtain a new class 

of solutions of the fields equations that represents a model of 

dark energy stars whose equation of state is ωρ=rp using a 

specify forms for the gravitational potential and the electric 

field intensity. We assume that the denomination dark energy 

is applied to fluids which violate the strong energy condition 

[15]. This article is organized as follows, in Section 2, we 

present Einstein´s field equations. In Section 3, we make a 

particular choice of gravitational potential )(xZ  that allows 

solving the field equations and we have obtained new models 

for dark energy stars consistent alone of dark matter. In 

Section 4, a physical analysis of the new solutions is 

performed. Finally in Section 5, we conclude.  

2. Einstein-Maxwell Field Equations 

We consider a spherically symmetric, static and 

homogeneous spacetime. In Schwarzschild coordinates the 

metric is given by  

2 2λ 2 2 2 2sin2 (r) 2 (r) 2ds = e dt + e dr + r (dθ + θdφ )ν−      (1) 

where ( )rν  and ( )rλ are two arbitrary functions.  

The Einstein field equations for the charged anisotropic 

matter are given by  
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where ρ  is the energy density, rp is the radial pressure, E  is 

electric field intensity, tp is the tangential pressure and primes 

denote differentiations with respect to r. Using the 

transformations, 2x = cr , 2λ(r)Z(x)= e− and 2 2 2ν(r)A y (x)= e

with arbitrary constants A and c>0, suggested by Durgapal and 

Bannerji [46], the Einstein field equations can be written as 
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σ  is the charge density, t rp p∆ = −  is the anisotropy factor 

and dots denote differentiation with respect to x. With the 

transformations of  [46], the mass within a radius r of the 

sphere takes the form  
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M(x)= x E dxρ∗ +∫                  (12) 
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where 

1
2

Z
Z c

x
ρ∗ − = − 

 
ɺ  

The interior metric (1) with the charged matter distribution 

should match the exterior spacetime described by the 

Reissner-Nordstrom metric:  

2 2
2 2 2 2

2 2

2 2
1 1 sin2 2 2M Q M Q

ds = dt + dr + r (dθ + θdφ )
r rr r

   
− − + − +      
   

 (13) 

where the total  mass and the total charge of the star are 

denoted by M and q2, respectively. The junction conditions at 

the stellar surface are obtained by matching the first and the 

second fundamental forms for the interior metric (1) and the 

exterior metric (13).  

In this paper, we assume the following equation of state  

rp = ωρ                                        (14) 

where ω is the dark energy parameter. 

3. The New Models for Dark Energy 

Stars 

In order to solve the Einstein field equations, we have 

chosen specific forms for the gravitational potential Z and the 

electrical field intensity E. Following MafaTakisa and 

Maharaj [47] and Bibi et al. [4] we have taken the forms 
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The potential is regular at the origin and well behaved in the 

interior of the sphere. Substituting (15) and (16) in (6) we obtain  
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Replacing (17) in (14), we have for the radial pressure 
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Supposing continuity in the first and second fundamental 

form, if ( ) 0rp r R= =  we have 
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Using (16) and (17) in (12), the expression of the mass 

function is  

( ) ( )
( )

2

3/2

23/2

2 2 2
( )

1

c a b a c abc Ka x
M x x

c ax

 − + − −
 =

+
      (20) 

And for the charge density 
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With (14), (15) and (16), the eq. (7) becomes 

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

3 2 2 2 2

3 3

2 2 8 8 5 64 1 5

1 1 2 1 2 1

ca ca b Ka x ca cab Ka x c a bbx a b Kax axy

ax y ax c ax c ax
ω
 − − + − − + −+ − +  = + −
 + + + +  

ɺ

           (22) 

Integrating (22), we obtain  
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The metric functions can be written as 
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The anisotropy factor ∆ is given by for  
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and the metric for this model is 
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The figures 1, 2, 3, 4, 5, 6 represent the graphs of ρ, σ2, 

M(x), pr, anisotropy ∆, strong energy condition respectively 

for different values of ω in the new obtained models with 

a=0.0175, b= 0.00329 and a stellar radius of r = 1Km. The 

values of the constants are c=K=1. 

 

Figure 1. Energy density vs radial coordinate. 

 

Figure 2. Charge density vs radial coordinate. 

 

Figure 3. Mass function vs radial coordinate. 

 

Figure 4. Radial pressure for different values of ω vs radial coordinate. 

 

Figure 5. Anisotropy ∆ for different values of ω vs radial coordinate. 
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Figure 6. The strong energy condition for different values of ω vs radial 

coordinate. 

4. Physical Features of the New Models 

In order for a solution to be physically acceptable and 

viable must satisfy the following physical properties [4, 15, 

37]:  

(i) The energy density must be well defined, must be 

positive and a decreasing function of the radial 

pressure  

(ii) The radial pressure must decrease as the radius 

increases and it must vanish at the surface of the 

sphere but for negative pressure this condition is not 

satisfied.  

(iii) Regularity of the gravitational potentials in the origin.  

(iv) For anisotropic solutions, the radial and the tangential 

pressure are equal to zero at the centre r=0  

(v) The consideration of dark energy is applicable only 

to fluids that violate the strong energy condition. 

The new obtained models constitute another new family of 

solutions of Maxwell-Einstein's field equations with 

anisotropy. The metric functions e2λand e2νcan be expressed in 

terms of elementary functions and the energy density, charge 

density and mass function also are represented analytical. In 

r=0we have e2λ(0)=1, e2ν(0)= CecA −2

1

2 and

( ) ( ) .00
)(2

0
)(2 =

′
=

′
== r

r
r

r ee νλ This shows that the gravitational 

potential is regular at the origin. In the center=0, )(3 bac −=ρ  

and )(3 bacpr −= ω . In these models, the mass function is 

strictly increasing function, continuous and finite and the 

charge density behaves well inside of the star and no present 

singularities at the centre.  

In figure 1, the energy density is finite and decreasing with 

the radial coordinate. In figure 2, the charge density is non-

singular at the origin, non-negative and decreases. In figure 3, 

the mass function is strictly increasing function, continuous 

and M (x) =0 at r=0. In figure 4, that represents the variation 

of the radial pressure for different values of ω, we observe 

the decrease of rp  when it diminishes ω. In figure 5, the 

anisotropy factor ∆ increases when it diminishes the dark 

energy parameter ω. In figure 6 it is observed as the strong 

energy condition is violated for values of ω ≥ - 0.4 what 

means that in these new models the consideration of dark 

energy is valid for this cases.  

5. Conclusions 

We have found a new family of solutions to the Einstein-

Maxwell system considering a particular form of the 

gravitacional potential Z (x) and the electric field intensity 

with a linear equation of state that represents a model of dark 

energy star where ω=p/ρ≤-1/3. The radial, energy density, 

mass function, anisotropy factor and the metric functions are 

regular and behaves well inside the stellar interior. The 

charge density is non-singular at the centre. In this model, the 

condition of dark energy star is applied only to the cases ω ≥-

0.4 because for these values of ω is not satisfied the strong 

energy condition. The new obtained solutions satisfy all the 

requirements for a compact negative energy stellar object and 

may be used to model relativistic configurations in different 

astrophysical scenes.  

The main reason for this research arises from that recent 

observations have verified an accelerated expansion of the 

Universe and the dark energy is a probable candidate. 

Evidence of this expansion has been shown independently 

from measurements of supernovae of type Ia and of the 

microwave background radiation [2]. This dark energy 

consists of an cosmic fluid governed by an equation of state 

p=ω ρ where the strong energy condition is violated [15]. 

Following Lobo [3] in this work the limits for the parameter 

ω are chosen in a way that ω ≤-1/3. The range for which ω 

<-1 has been denoted phantom energy and provides a 

natural scenario for the existence of exotic geometries such 

as traversable wormholes that could be used in interstellar 

travel with the consequent causality violations [6, 7]. The 

dark energy stars could have their origin in a density 

fluctuation in the cosmological background resulting from 

the nucleation of a dark energy star through a density 

perturbation [3]. 
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