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Abstract: A number of authors have used special perturbation methods to propagate Comet Halley back before its oldest 

observation in 239 BC. Unfortunately, results from these studies vary drastically because it is so difficult to accurately model 

nongraviatational forces acting on comets. In contrast, general perturbation methods do not need to model any forces and can be 

more accurate over long periods of time. Regrettably, the most recent general perturbation method used for Comet Halley 

introduced a lot of subjectivity. A new general perturbation method integrating Halley’s Comet back in time is presented here. 

This new method uses least squares, based solely on math. Therefore, it does not introduce any subjectivity. It also permits 

statistical analysis of the model’s accuracy. Using this model, Halley’s Comet is propagated back to 2317 BC, and with the 

derived equations it can easily be integrated back much further in time. Results are very similar to two previous studies by other 

authors, varying by less than five years when propagated back over 2,200 years. This same new general perturbation method is 

also applied to Comet Swift-Tuttle. Results with Swift-Tuttle compare reasonably well with the only other known research that 

integrated this comet back in time. 
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1. Introduction 

In 1695, Edmond Halley wrote his good friend Isaac 

Newton a private letter. Referring to the comet of 1531, 

Halley stated, “I am more and more confirmed that we have 

seen that Commet now three times, since ye Yeare 1531” [1] 

Ten years later, Halley published the orbital elements for 24 

observed comets and publically noted the similarities of the 

comets from 1682, 1607, and 1531. He claimed that they 

were actually the same comet and made the bold prediction 

“that it will return again in the year 1758. And posterity will 

not refuse to acknowledge that this was first discovered by an 

Englishman.” [2] Sixteen years after his death, his prediction 

was verified, and the comet was named in his honor. 

Since then, many others have tried to track Comet Halley 

back in time to link it with earlier observations. Pingré was 

able to determine the perihelion passage of the great comet of 

1456 and confirm that this was an earlier passage of Halley’s 

Comet. However, due to his rough determination of the orbits 

for the comets of 837 and 1301, Pingré failed to realize these 

were also passages of Halley. [3] Using just the average time 

between perihelion passages, Biot stepped Halley’s Comet 

back in time to Chinese observations from 65 BC. [4] Given 

Halley’s predictable orbit, this method of moving 76 years 

back at a time is reasonably accurate. This is how Hind 

initially linked Comet Halley to observations between 1301 

and 11 BC. He then compared other orbital elements with 

Halley. In many cases, this method gave him correct answers, 

but he also incorrectly identified other passages. [5, 6] 

Later, more sophisticated methods of stepping Halley back 

in time were used to estimate prior perihelion passages 

before any known observations. These techniques can be 

grouped into two broad categories: special perturbation and 

general perturbation methods. Both can be used to integrate a 

comet or satellite backward or forward in time, accounting 

for a range of forces acting on the comet. [7] 

This paper reviews previous work integrating Halley’s 

Comet back in time, including both special and general 

perturbation methods. Then a new general perturbation 

method is explained, which yields similar results as previous 

research. Finally, this new method is applied to Comet 

Swift-Tuttle with favorable results. 
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2. Previous Research 

2.1. Special Perturbation Methods 

Special perturbation methods numerically integrate the 

equations of motion acting on a comet forward or backward in 

time accounting for all perturbing forces. This is called a 

special perturbation method because it is only valid for the 

specific initial conditions and forces modelled. 

All special perturbation methods work in the same way. 

Beginning at a known position, all of the forces acting on a 

comet are calculated. This includes the gravitational force 

from the sun, and for most advanced models, it also includes 

gravitational forces from planets as well as nongravitational 

forces caused by outgassing as the comet gets closer to the Sun. 

A computer program assumes these forces are constant for a 

small step in time and calculates the comet’s future position 

and velocity after this small step. The computer program then 

moves the planets by that same time interval, and the whole 

process is repeated over and over, moving one small step at a 

time, either forward or backward in time. 

Chang was one of the first to use this special perturbation 

method to propagate Halley’s Comet back in time. He 

integrated it back to 1057, accounting for the gravitational 

forces of the Sun, Venus, Earth, Jupiter, Saturn, Uranus, and 

Neptune. He did not account for the other planets or any 

nongravitational forces. [8] 

It is relatively simple for special perturbation methods to 

calculate the gravitational forces acting on comets. Because 

the locations of planets are well known, it is easy to calculate 

the forces they exert on a comet using Newton’s law of gravity. 

However, it is much more difficult to determine the 

nongravitational forces caused by outgassing, and the 

accuracy of modelling these forces is generally the limiting 

factor for integrating comets back in time. [9] 

In 1950, Whipple was one of the first to try to model the 

nongravitational forces acting on comets. [10] Later, 

between 1969 and 1973, Marsden, Sekanina, and Yeomans 

collectively published five other papers that also modelled 

these nongravitational forces. Their final model includes 

three parameters, which differ for each comet. [11] Using 

this model, Yeomans numerically integrated Halley’s orbit 

from the 1682, 1759, and 1835-1836 observations back to 

837 using a least squares differential correction. Yeoman’s 

program showed Halley came within 0.04 AU of the Earth in 

837. Because this close of a pass would significantly perturb 

the comet’s orbit, no attempt was made to integrate Halley 

further back in time. [12] Fortunately, Yeomans and Kiang 

were later able to include ancient Chinese observations from 

239 BC, which allowed them to integrate Halley back further 

in time. To link Halley with these ancient Chinese 

observations, they had to adjust the comet’s computed 

perihelion time and eccentricity following the close pass by 

Earth in 837. Using a step size of 0.5 days, they accounted 

for gravitational forces from all the planets and assumed the 

parameters for the nongravitational force were constant. 

With these assumptions, they propagated Comet Halley back 

to 1403 BC. [6] 

The following year, another group published a slightly 

different method to estimate the nongravitational forces acting 

on comets. [13] Landgraf used their model to propagate 

Halley’s Comet. He also noticed that the nongravitational 

forces acting on Comet Halley increase about 0.5% each 

revolution, likely due to the comet’s deceasing mass. 

Therefore, instead of using a model that kept nongravitational 

forces constant, as Yeomans and Kiang had done, Landgraf’s 

model used a least squares correction that allowed the 

nongravitational parameters to vary linearly with time. With 

that model, he integrated Halley back to 2316 BC. [14, 15] 

In contrast, Sitarski noted a parabolic time dependency in 

the nongravitational forces acting on Comet Halley. Therefore, 

his work modelled the nongravitational parameters as a 

parabolic function with time, and he integrated Comet Halley 

back to 1457 BC. [16-19] 

It is interesting to note the different results of these three 

most recent special perturbation studies. Table 2 shows the 

perihelion times of Comet Halley (in years BC) for each of 

these studies beginning in 239 BC, the date of the last 

observed perihelion passage. The most significant difference 

is Yeomans and Kiang assumed the parameters modelling 

nongravitational forces were constant. Landgraf assumed 

those parameters had a linear relationship with time, and 

Sitarski assumed they had a parabolic relationship with time. 

Notice from Table 2, Landgraf’s model calculated Halley 

passed perihelion in 1472.8 BC, which is 15 years different 

from Sitarski’s calculations and almost 70 years different from 

Yeomans and Kiang’s model! As others have noted, 

imperfectly modelled nongravitational forces are generally the 

limiting factor for the integrating comet orbits, and models of 

these forces change frequently. [9] This illustrates a drawback 

to special perturbation methods. If the forces cannot be 

calculated accurately, the model’s errors grow significantly 

over time. 

2.2. General Perturbation Methods 

In contrast to special perturbation methods, which 

numerically integrate the position and velocity vectors 

forward or backward in time, general perturbation methods 

analytically integrate the orbital elements. This is 

advantageous because orbital elements do not change as 

quickly as position and velocity vectors. In addition, because 

general perturbations use analytical methods, it is not 

necessary to model all the perturbing forces. Instead, an 

orbital element such as eccentricity can be modelled as a 

Taylor series, as shown in Equation 1. If the derivatives of 

eccentricity are known, it does not really matter what specific 

forces are causing ��, ��, etc. 

�� = �� + ��� +
	�


!
�
 +	

	


�!
��+. ..              (1) 

However, most perturbations, including both gravitational 

forces from the planets and nongravitational forces, have 

periodic effects on orbital elements. Therefore, it is more 

common to model these changes using sines and cosines, with 
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a Fourier series, show in Equation 2. 

�� = �� + ∑ (��
�
��� ����� +	�������)        (2) 

Assuming all the forces can be calculated, special 

perturbation methods are usually more accurate than general 

perturbation methods for relatively short time frames. In 

contrast, general perturbation methods can be more accurate 

if some forces are difficult to calculate (like the 

nongravitational force acting on comets) or if the integration 

is over longer periods. Over long time intervals, general 

perturbation methods tend to smooth out small changes; this 

is one reason early methods were called “methods of 

averages”. [7] More sophisticated general perturbation 

methods, sometimes called “Variation of Parameters”, are 

much more accurate and are credited with the famous 

discovery of Neptune in 1845. [20] 

Early attempts to trace Comet Halley back in time were 

a very crude example of a general perturbation method. 

When Biot, and later Hind, stepped 76 years back in time, 

looking for observations of retrograde comets, they were 

both essentially using a general perturbation method 

without any derivatives shown in Equation 1 or sines and 

cosines in Equation 2. Instead, they were assuming the 

time between perihelion passages was constant and just 

used an average of the observed times between perihelions. 

[4-6] 

Kamieński used a more accurate model to analytically 

integrate Halley back in time before any recorded 

observations. His model included three sine and cosine terms, 

but instead of using the exact form of Equation 2, he used the 

equivalent series shown below with only cosine terms, 

including phase shifts, where Tn is the time between perihelion 

passages for the n
th

 orbit. 

�� = � + bcos(�� + #) + ����($� + %) + ℎ���(�� + ')  (3) 

Kamieński selected the coefficients, a-j, by inspection 

to achieve the best model. [19, 21, 22] Because these 

values were not determined mathematically, his method 

introduced some subjectivity. However, as shown in Table 

2, it did yield results similar to the special perturbation 

methods. 

3. A New General Perturbation Method 

for Comet Halley 

Building upon Kamieński work, a new general perturbation 

method was developed to integrate Comet Halley back in time.  

Similar to Kamieński’s work, this method looks at the time 

between observed perihelion passages. There are 30 observed 

perihelion passages of Halley’s Comet. The most recent was 

in 1986, and the oldest observation was in 239 BC. Therefore, 

there are 29 times between successive perihelion passages, 

which are plotted in Figure 1. 

Notice, the time between successive perihelion 

observations, Tn, only varies by about five years, with a 

minimum time of 74.4 years and a maximum of 79.3 years. As 

expected, the periodic effects of perturbations cause Tn to 

oscillate slightly; so, modelling this with a Fourier series, as 

shown in Equation 3, is preferred. 

 

Figure 1. Times between successive perihelion observations for Comet 

Halley. The x-axis show the number of orbits in the past. For example, the 

point on the far right shows the difference between the two most recent 

perihelion passages. 

Figure 2 shows the result of including just the first line of 

Equation 3, with only a constant and one cosine term. The 

solid line is the resulting model. Unlike Kamieński’s method, 

however, the coefficients in this model were not determined 

subjectively, but were found mathematically using least 

squares. Two higher-order cosine terms were then added, as 

in Equation 3, to improve the model’s accuracy. This 

resulted in the plot shown in Figure 3. A fourth cosine term 

was initially added, but it had an amplitude of zero, so it did 

not change the model at all and was therefore not included 

in the model. 

All of the coefficients, a-j in Equation 3 were determined 

using least squares. Those values, shown in Table 1, resulted 

in a Root Mean Square (RMS) of 0.882 years. 

 

Figure 2. A simplified model for the time between successive perihelion 

passages for Comet Halley. The solid circles indicate times between 

successive observed perihelion passages, and the solid line is the model 

using only the first periodic term from Equation 3, �� = � + ����(�� + #). 
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Figure 3. A new model for the time between successive perihelion passages 

for Comet Halley. The solid circles indicate times between perihelion 

passages based on known observations, and the solid line is the best-fit 

model using all three periodic terms in Equation 3. 

Using least squares to determine the coefficients 

eliminates the subjectivity in Kamieński’s work. It also 

permits statistical analysis of the model. The state, X, is 

defined as a matrix of the coefficients, a-j. 

( = [�	�	�	#	�	$	%	ℎ	�	']+             (4) 

The model, yn, is given in Equation 3, and the A matrix is 

then found using partial derivatives. 

, =
-.

-/
                        (5) 

Finally, the covariance matrix, P, is calculated from 

Equation 6, and the diagonal terms of P give the variance of 

the coefficients a-j. [7] 

0 = [,+,]1�                    (6) 

This allows the confidence in the coefficients a-j to be 

calculated. The coefficients for the model, along with their 

standard deviations found from P, are listed below in Table 1. 

Using these values, a Monte Carlo simulation was 

conducted, varying the coefficients a-j in the model according 

their standard deviations. This allowed a one standard 

deviation line to be added to Figure 3, indicating the accuracy 

of this new model. This is shown in Figure 4. 

Table 1. Values and standard deviations of coefficients for a new model of 

the time between perihelion passages of Comet Halley, using Equation 3. 

Coefficient Value Standard Deviation 

a 76.852910650 0.189945328 

b 1.219831935  0.272152002 

c 0.555673015 0.026694034 

d 0.746092508 0.446938184 

e 0.402349102 0.265249296 

f 1.071608280 0.085542901 

g 1.712073671 1.492714905 

h 0.257794140 0.266285453 

i 1.959332378 0.123671080 

j -0.108276329 2.084711338 

 

Figure 4. A new model for the time between successive perihelion passages 

for Comet Halley with one standard deviation lines. The solid circles 

indicate times between perihelion passages based on known observations, 

and the solid line is the best-fit model. The dashed lines show the variability 

of the model within plus and minus one standard deviation. 

Once the coefficients a-j were calculated, it is very easy to 

calculate Tn as far back or forward in time as desired. Figure 

5 shows those values for the last 56 orbits, 29 of which were 

observed, and the prior 27 orbits are predicted based on this 

new model. Using these times between successive perihelion 

passes, the passages prior to 239 BC were easily calculated, 

going back over 2,000 years, to 2317 BC. These dates are 

shown in the far right column of Table 2. 

Notice the results from this new model are very similar to 

those of Landgraf and Kamieński, varying by an average of 

only 4.3 and 2.0 years respectively from the works of these 

two authors. However, there are larger differences between 

the work presented here and the work of Yeomans and Kiang 

(24.6 years on average) and Sitarski (9.1 years on average). 

These differences are most likely due to the methods they used 

to model the nongravitational forces acting on Comet Halley. 

 

Figure 5. The time between successive perihelion passages for Comet Halley 

extrapolated back 56 orbits, corresponding to 2317.6 BC. The circles 

indicate known times between perihelion passes. The solid line is the best-fit 

model, and the dashed lines show plus and minus one standard deviation. 
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Table 2. Perihelion passages (in years BC) for Comet Halley prior to 239 

BC calculated by various authors. 

Special Perturbations General Perturbations  

Yeomans and Kiang Landgraf Sitarski Kamieński Brown 

239.6 239.7 239.8 238.7 239.8 

314.3 314.6 314.9 313.8 316.3 

390.3 390.7 391.1 390.7 393.4 

465.5 465.7 466.1 466.7 471.6 

539.6 541.0 542.7 544.9 550.0 

615.4 617.3 619.2 622.0 627.8 

689.9 692.0 694.1 701.1 705.2 

762.4 768.9 770.2 778.2 781.4 

835.6 845.6 845.6 856.6 856.7 

910.6 923.9 922.4 932.8 932.4 

985.1 1001.2 999.2 1009.9 1008.7 

1058.1 1081.0 1075.0 1085.3 1085.0 

1128.7 1158.5 1151.5 1162.3 1161.8 

1197.6 1236.7 1226.7 1238.2 1239.1 

1265.3 1315.7 1302.6 1316.4 1316.5 

1333.4 1393.3 1379.6 1393.3 1394.6 

1403.2 1472.8 1457.5 1472.3 1473.0 

 1550.4  1549.6 1550.5 

 1628.0  1627.8 1626.9 

 1705.4  1704.1 1702.9 

 1782.2  1781.0 1778.2 

 1858.2  1856.2 1853.8 

 1935.2  1932.6 1930.4 

 2010.0  2008.3 2007.4 

 2086.8  2083.7 2084.2 

 2162.2  2160.3 2161.7 

 2239.0  2235.6 2239.8 

 2316.1  2312.9 2317.6 

4. Appling this New Perturbation Method 

to Comet Swift-Tuttle 

It is relatively easy to use this new general perturbation 

method to propagate other comets back in time if there is 

sufficient data to identify trends. Comet Swift-Tuttle is 

another periodic comet that has been observed many times and 

spends most of its time away from the plane of the ecliptic. 

Therefore, just like Halley, Comet Swift-Tuttle does not have 

large perturbations, and its orbit does not change significantly. 

Swift-Tuttle has passed perihelion 20 times since 69 BC, 

resulting in 19 known times between perihelion passages. 

Using these observed data points, least squares was used to 

determine the best-fit model for the time between successive 

perihelions, Tn, using Equation 7 below. 

�� = � + bcos(�� + #) + ����($� + %)      (7) 

Adding a third cosine term did not improve the model, so 

it was not included. This is likely because there are fewer 

data points with Comet Swift-Tuttle than there are for Halley. 

The resulting model had an RMS of 1.97 years, which as 

expected is slightly larger than it was for Comet Halley. 

The coefficients, a-g, were found mathematically using 

least squares in the same manner as they were for Comet 

Halley. These values and their standard deviations are listed in 

Table 3, and the plot of Tn is shown in Figure 6. 

Using the coefficients from Table 3, it is easy to calculate 

the times between perihelion passages prior to 69 BC. Using 

those times, the years of each perihelion were calculated. The 

five previous perihelion times (in years BC) were estimated to 

be 201.7, 334.3, 464.1, 590.2, and 714.8. 

Table 3. Values and standard deviations of coefficients for the time between 

perihelion passages of Comet Swift-Tuttle using Equation 7. 

Coefficient Value Standard Deviation 

a 129.340891273 0.258891351 

b 2.865508059 0.331685822 

c 1.013625473 0.024005448 

d 3.801243680 0.284222378 

e 2.151617422 0.317320878 

f 0.711866467 0.044131302 

g 5.317172698 0.490163909 

 

Figure 6. The time between successive perihelion passages for Comet 

Swift-Tuttle. The solid circles indicate times between successive perihelion 

passages based on known observations, and the solid line is the best-fit 

model using Equation 7. The dashed lines show the variability of the model 

within plus and minus one standard deviation. 

These values vary slightly from previous work by Yau, 

Yeomans and Weissman, who used special perturbation 

methods without any nongravitational forces to trace 

Swift-Tuttle 634 years back in time from its last observation in 

69 BC. They predicted the comet passed perihelion in 703 BC, a 

difference of 11 years from the model presented here. [23] 

Perhaps this difference is due to nongravitational forces that 

were not accounted for by Yau et al. or simply because there is 

not as much data available for Comet Swift-Tuttle as there is for 

Halley. However, this difference is similar to the different times 

the three special perturbation methods calculated for Comet 

Halley 634 years before its last observation, shown in Table 2. 

5. Conclusion 

Special perturbation methods are the most common way 

comet or satellite orbits are integrated forward or backward in 

time. However, because it is very difficult to accurately model 

every force acting on a comet, especially the nongravitational 

forces caused by outgassing, there can be significant 

differences between special perturbation models. In contrast, 

general perturbation methods do not need to calculate specific 

forces acting on a comet. Instead, general perturbation 
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methods only require enough data to identify trends that are 

caused by those forces. 

Kamieński used a general perturbation method, as did the 

research presented here. Both models used three cosine terms 

to estimate the small changes in time between successive 

perihelion passages of Halley’s Comet. However, the new 

general perturbation model presented here improves upon 

Kamieński’s work in two ways. Most importantly, instead of 

subjectively selecting coefficients to model the periodic 

changes in perihelion passages, the new model uses least 

squares to mathematically determine the best value for each 

coefficient. In addition, the least squares method allows the 

variance of each coefficient to be calculated, which gives a 

measure of accuracy for the model. 

The new model developed for Comet Halley resulted in an 

RMS of only 0.882 years over the 2,200 years of observed 

perihelion passages. Also, when Halley was integrated back 

from 239 BC to 2317 BC, this new model yielded very similar 

results to Kamieński’s work as well as the special perturbation 

model developed by Landgraf. Compared to their research, the 

new model developed here only varied by an average 2.0 and 

4.3 years respectively over 2,000 years. 

To demonstrate how this general perturbation method can 

easily be adapted to another comet, the same approach was taken 

with Comet Swift-Tuttle. Due to limited data, only two cosine 

terms were included, yet the results going back 634 years before 

the oldest perihelion observation were reasonably close to the 

propagation by Yau et al. using a special perturbation method. 

In the future, the general perturbation method shown here 

could be improved by weighting observations differently 

based upon the confidence of each observation. It might also 

be improved by modelling parameters other than Tn, the time 

between successive perihelion passages. While it was 

convenient to use Tn for this research because it does not vary 

significantly, other parameters would permit more data to be 

used. For example, the semimajor axis changes slightly 

throughout a comet’s orbit, but there are many measurements 

taken during each pass. This would result in many more data 

points, which could translate into a more accurate model. 
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